AzureOpenAIEmbeddings
This will help you get started with AzureOpenAI embedding models using LangChain. For detailed documentation on AzureOpenAIEmbeddings
features and configuration options, please refer to the API reference.
Overview
Integration details
Provider | Package |
---|---|
AzureOpenAI | langchain-openai |
Setup
To access AzureOpenAI embedding models you'll need to create an Azure account, get an API key, and install the langchain-openai
integration package.
Credentials
You’ll need to have an Azure OpenAI instance deployed. You can deploy a version on Azure Portal following this guide.
Once you have your instance running, make sure you have the name of your instance and key. You can find the key in the Azure Portal, under the “Keys and Endpoint ” section of your instance.
AZURE_OPENAI_ENDPOINT=<YOUR API ENDPOINT>
AZURE_OPENAI_API_KEY=<YOUR_KEY>
AZURE_OPENAI_API_VERSION="2024-02-01"
import getpass
import os
if not os.getenv("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your AzureOpenAI API key: ")
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
Installation
The LangChain AzureOpenAI integration lives in the langchain-openai
package:
%pip install -qU langchain-openai
Instantiation
Now we can instantiate our model object and generate chat completions:
from langchain_openai import AzureOpenAIEmbeddings
embeddings = AzureOpenAIEmbeddings(
model="text-embedding-3-large",
# dimensions: Optional[int] = None, # Can specify dimensions with new text-embedding-3 models
# azure_endpoint="https://<your-endpoint>.openai.azure.com/", If not provided, will read env variable AZURE_OPENAI_ENDPOINT
# api_key=... # Can provide an API key directly. If missing read env variable AZURE_OPENAI_API_KEY
# openai_api_version=..., # If not provided, will read env variable AZURE_OPENAI_API_VERSION
)
Indexing and Retrieval
Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the working with external knowledge tutorials.
Below, see how to index and retrieve data using the embeddings
object we initialized above. In this example, we will index and retrieve a sample document in the InMemoryVectorStore
.
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore
text = "LangChain is the framework for building context-aware reasoning applications"
vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)
# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()
# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")
# show the retrieved document's content
retrieved_documents[0].page_content
'LangChain is the framework for building context-aware reasoning applications'
Direct Usage
Under the hood, the vectorstore and retriever implementations are calling embeddings.embed_documents(...)
and embeddings.embed_query(...)
to create embeddings for the text(s) used in from_texts
and retrieval invoke
operations, respectively.
You can directly call these methods to get embeddings for your own use cases.
Embed single texts
You can embed single texts or documents with embed_query
:
single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100]) # Show the first 100 characters of the vector
[-0.0011676070280373096, 0.007125577889382839, -0.014674457721412182, -0.034061674028635025, 0.01128
Embed multiple texts
You can embed multiple texts with embed_documents
:
text2 = (
"LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
print(str(vector)[:100]) # Show the first 100 characters of the vector
[-0.0011966148158535361, 0.007160289213061333, -0.014659193344414234, -0.03403077274560928, 0.011280
[-0.005595256108790636, 0.016757294535636902, -0.011055258102715015, -0.031094247475266457, -0.00363
API Reference
For detailed documentation on AzureOpenAIEmbeddings
features and configuration options, please refer to the API reference.
Related
- Embedding model conceptual guide
- Embedding model how-to guides